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We formulate a simple edge generation rule based on an inverse like mass action
principle for random graphs over a structured vertex set. We show that under
very weak assumptions on this structure one obtains a scale free distribution for
the degree. We furthermore introduce and study a ‘‘my friends are your friends’’
local search principle which makes the clustering coefficient large.
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1. INTRODUCTION

Random graphs with a scale free distribution for the degree seem to appear
very frequently in a great variety of real life situations like the World-
WideWeb, the Internet, social networks, linguistic networks, citation net-
works and biochemical networks. An excellent recent survey is the article
by Albert and Barabasi. (1)

Despite the large number of articles dealing with specific properties of
such networks little is known about origin and formation principles of such
graphs in the general framework. Most popular became the model of
Albert and Barabasi (2) where graphs grow by successively adding a new
vertex say x at each time step and forming edges between this new vertex
and the already existing ones by assuming that the probability that x forms
an edge with a vertex y whose degree is k is about const · k

N where N is the
total number of vertices at that time. This gives a scale free graph although



a very homogeneous one with little room for incorporating additional
structures. The principle used in this construction, and the many variants
of it, could be seen as a degree-mass-action principle since the degree acts
here as a kind of positive affinity parameter for alignment of new vertices.
Of course knowledge about the degree of a vertex is in real networks
seldom available for other vertices. For instance in the social networks of
friendships an individual certainly does not make the formation of a new
friendship dependent of checking how many friends the potential new
candidate already has (not to mention that it would be rather difficult to
estimate this number). So we seek for an edge formation principle more
related to a pre-given structure on the vertex set. We assume that this
structure is specified by a real positive parameter w ¥ R+—like social
importance, money or beauty—with a given probability distribution j(w).
Furthermore we think of an edge between vertices x and y as the result of a
directed choice made by either x or y (symbolized by x Q y or y Q x). This
seems to be very reasonable since in many real life networks edges are
formed that way. Note that although the edge creation is a directed process
we consider the resulting graph as an undirected one since for the majority
of relevant transmission processes on the network the original orientation
of an edge is irrelevant. The crucial assumption about the pairing proba-
bility is now a kind of inverse mass-action-principle. Namely that the
probability that a vertex x which makes a choice chooses a given vertex y
with parameter w(y) is proportional to [j(w(y))]−a · 1

N with some a > 0
and N being the total number of vertices. Due to this principle it is not the
actual value w of a vertex y which is relevant for the pairing probability
but rather it’s relative frequency of appearance in the ‘‘population.’’ This is
in a certain sense a market rule—the more rare a property is, the more
attractive it becomes for others. Of course the property associated with w

has to be positive in perception. We think that this ‘‘Ansatz’’ captures the
essence of many real life network formation processes.

Instead of using a technical name for the principle like ‘‘inverse mass
action’’ we want to call it the ‘‘Cameo-principle’’ having in mind the
attractiveness, rareness and beauty of the small medallion with a profiled
head in relief called Cameo. And it is exactly their rareness and beauty
which gives them their high value.

Our basic assumptions can be summarized as follows:

• The parameter w is independent identically distributed (i.i.d.) over
the vertex set with a smooth monotone decreasing density function j(w).

• Edges are formed by a sequence of choices. By a choice we mean that
a vertex x chooses another vertex, say y, to form an edge between y and x.
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A vertex can make several choices. All choices are assumed to be indepen-
dent of each other.

• If x makes a choice the probability of choosing y depends only on
the relative density of w(y) and is of the form

Pr{x Q y | w(y)} ’ [j(w(y))]−a ·
1
N

; a ¥ (0; 1). (1)

• A pre-given outdegree distribution determines the number of choices
made by the vertices. The total number of choices (and therefore the
number of edges) is assumed to be about const · N.

The striking observation under the above assumptions is now the
emergence of a scale-free degree distribution independent of the choice of
the w-distribution. Furthermore it can be shown that the exponent in the
degree distribution becomes independent of j(w) if the tail of j decays
faster then any power law. The precise formulation of the above statements
is given in Theorem 1 and 2 in the next section.

2. ANALYSIS OF THE MODEL

Let VN={1,..., N} be the vertex set of a random graph space. We are
mainly interested in the asymptotic properties for N being very large. We
assign i.i.d. to each element x from the set VN a continuous positive real
random variable (r.v.) w(x) taken from a distribution with density function
j(w). The variable w can be interpreted as a parametrization of VN. For
a set Cw0, w1

={x: w(x) ¥ [w0, w1]} we obtain E(ÄCw0, w1
)=N · >w1

w0
j(w) dw.

Without loss of generality we always assume j > 0 on [0, .). As a techni-
cal assumption we will furthermore need the following:

Assumption 1. j ¥ C2([0, .)) and the second derivatives D2(jm)
have no zeros for |m| ¥ (0, m0) and w > w0(m) (this is just a monotonicity
assumption on the tail of j).

Edges are created by a directed process in which the basic events are
choices made by the vertices. All choices are assumed to be i.i.d. The
number of times a vertex x makes a choice is itself a random variable which
may depend on x. We call this r.v. dout(x). The number of times a vertex x
was chosen in the edge formation process is called the indegree din(x). Each
choice generates a directed edge. We are mostly interested in the corre-
sponding undirected graph. If we speak in the following about outdegree
and indegree we refer just to the original direction in the edge formation
process. Let pw=Pr{x Q y | w=w(y)} be the basic probability that a
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vertex y with a fixed value of w is chosen by x if x is about to make a
choice. For a given realization t of the r.v. w over VN we assume:

pw(t, N)=
A(t, N)
[j(w)]a

·
1
N

(2)

where a ¥ (0, 1) and A(t, N) is a normalization constant. It is easy to see
that the condition >.

0 [j(w)]1 − a dw < . is necessary and sufficient to get
A(t, N) Q A > 0 for N Q . where convergence is in the sense of probabil-
ity. Therefore we need a < 1. One might argue that the choice probabilities
should depend more explicitly on the actual realization t of the r.v. w over
VN—not only via the normalization constant. The reason not to do so is
twofold. First it is mathematically unpleasant to work with the empirical
distribution of w induced by the realization t since one had to use a
somehow artificial N-dependent coarse graining. Second the empirical dis-
tribution is not really ‘‘observed’’ by the vertices (having in mind for
instance individuals in a social network). What seems to be relevant is more
the common believe about the distribution of w. In this sense our setting is
a natural one. To keep the analysis simple we will first assume in Sec-
tion 2.1. that the r.v. dout(x) is constant and equal to k0 for all x. We will
discuss the situation of a variable dout in Section 2.2. Since we want to show
that under the above conditions on j we obtain a power law distribution
for the degree we have to say a few words about the notion of power-law
distribution in our framework. We say that a discrete probability distribu-
tion k on N is of power law type with exponent b if

k(k)=
1

kb+o(1) for k > 1. (3)

This means that our concept of power law distribution is an asymptotic
one. We think that this is a very reasonable notion since in any empirical
observation one can see only an approximation to a power law.

Before starting with the proof of our claims we would like to mention
that the emergence of a power law distribution in our setting is not so
surprising as it might seem at the first look. The situation is best explained
in form of an example. Let j(w)=C · e−w and define a new variable
wg= 1

[j(w)]a=ewa

Ca . The new variable wg can be seen as the effective parameter
to which the vertex choice process applies. What is the induced distribution
of wg? With F(z)=Pr{wg < z} we obtain

F(z)=F
1
a ln Ca · z

0
j(w) dw=−z

−1
a − C (4)
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and therefore the wg-distribution f(wg)=1
a · 1

(w
g)1+(1/a) . This is a power law

distribution with an exponent depending only on a.

2.1. The Case of Constant Outdegree (dout(x)=k0)

The main result of the paper is contained in the following

Theorem 1. (i) Let j(w)= 1
w

b+o(1) with b > 2.
Then limN Q . Pr{d(x)=k | x ¥ VN}= 1

k1+(1/a) − (1/ab)+o(1) .

(ii) Let j(w) fulfill the Assumption 1.
Then limN Q . Pr{d(x)=k | x ¥ VN}= 1

k1+(1/a)+o(1) .

Remark. The theorem says, that under Assumption 1 the degree
distributions for the finite random graphs of our model converge for
N Q . to a power law distribution in the sense of formula (3).

Proof. Since by assumption the outdegree is constant and d(x)=
din(x)+dout(x)=din(x)+k0 asymptotically almost surely, we have to con-
sider only the indegree distribution. First we compute the expectation (in
the limit N Q .):

E(din(x) | w=w(x))=
k0 · A

[j(w)]a
(5)

and therefore

E(din(x))=k0 · A · F [j(w)]1 − a dw. (6)

For a x with fixed w=w(x) we get for the indegree distribution
kw(k)=Pr{din(x)=k | w=w(x)} a binomial distribution (here we count
also multiple edges but the probability for their appearance vanishes for
large N)

kw(k)=1k0N
k

21 A(t, N)
[j(w)]a N

2k 11 −
A(t, N)

[j(w)]a N
2k0N − k

(7)

which converges in the limit of large N to a Poisson distribution:

k
w
(k)=

ck
w

k!
e−cw (8)

‘‘Cameo Principle’’ and Origin of Scale-Free Graphs in Social Networks 1403



with cw= k0 · A
[j(w)]a

. Finally we obtain for the unconditional limiting probabil-

ity k(k)=limN Q . Pr(din(x)=k) the expression

k(k)=F j(w)
ck

w

k!
e−cw dw. (9)

The main contribution to k(k) comes from a rather small interval of
w-values—called Iess(k)—with the property that for w0 ¥ Iess(k) the expec-
tation E(din(x) | w0=w(x)) is of order k. The rapid decay of the Poisson
distribution will guarantee that the remaining parts of the integral become
arbitrary small for large k. To fill in the details let

Iess(k, c)=5j−1 11 k0 · A
k − k

1
2+c

2
1
a2 , j−1 11 k0 · A

k+k
1
2+c

2
1
a26 (10)

with 0 < c ° 1. To estimate kess(k)=>Iess(k, c) j(w) ck
w

k! e−cw dw we define a
new variable e in the interval [−k

1
2+c, k

1
2+c] by w=j−1((k0 · A

k+e)
1
a) and trans-

form the integral into

kess(k)=F
k

1
2+c

−k
1
2+c

−(k0 · A)
1
a

a(k+e)1+1
a
·

j p j−1 11k0 · A
k+e

2
1
a2

(Dj) 1j−1 11k0 · A
k+e

2
1
a22

·
c̃k

e

k!
e−c̃e de (11)

with

c̃e=
k0 · A

5j 1j−1 11k0 · A
k+e

2
1
a226a

=k+e. (12)

Here we used the relation Dj−1(x)=[(Dj)(j−1(x))]−1. Using Stirling’s
formula k!=(2pk)

1
2 (k

e)
k (1+o(1)) and the approximation (1+e

k)
k=

e e − e2

2k+o(1) for |e| ° k
2
3 we get for the Poisson term in the integral

c̃k
e

k!
e−c̃e=(2pk)−1

2 · e− e2

2k+o(1). (13)

Since |e| ° k we obtain from formula (11)

kess(k)=
(k0 · A)

1
a (1+o(1))

ak1+1
a

· F
k1/2+c

−k1/2+c

− j p j−1 11k0 · A
k+e

2
1
a2

(Dj) 1j−1 11k0 · A
k+e

2
1
a22

·
e− e2

2k+o(1)

(2pk)
1
2

de.

(14)
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If the decay of j is faster then any power-law we will show that

−j p j−1 11k0 · A
k+e

2
1
a2

(Dj) 1j−1 11k0 · A
k+e

2
1
a22

=(k+e)o(1) (15)

from which we can conclude that kess(k)= 1
k1+(1/a)+o(1) holds. But first we will

deal with the simpler case when j is itself of power-law type. Let us assume
that j has an exact power-law tail of the form C

w
b . Therefore j−1(w)=(C

w)
1
b

and

(Dj) j−1 11k0 · A
k+e

2
1
a2=

−bC
− 1
b (k0 · A)

b+1
ab

(k+e)
b+1
ab

(16)

and finally

−j p j−1 11k0 · A
k+e

2
1
a2

(Dj) 1j−1 11k0 · A
k+e

2
1
a22

=
C

1
b(Ak0)

−1
ab

b(k+e)
− 1
ab

. (17)

Since

F
k1/2+c

−k1/2+c

e− e2

2k+o(1)

(2pk)
1
2

de 4 1+o(1) (18)

we get for the essential part of the degree distribution

kess(k)=
C

1
b(k0 · A)

1
a − 1

ab (1+o(1))
bak1+1

a − 1
ab

=
1

k1+1
a − 1

ab
+o(1)

. (19)

The correction term coming from the integration outside the essential
domain can be estimated as follows

ksmall(k) < const ·1F
− k1/2+c

−k

e− e2

2k+o(1)

(2pk)
1
2

de+F
.

k1/2+c

e− e2

2k+o(1)

(2pk)
1
2

de2

=o 1 1
k1+1

a − 1
ab

2 . (20)
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In the case when j(w) is a power law in our weaker sense, say j(w)=
1

w
b+o(1) , we need some regularity condition of the form Dj(w)= − 1

w
1+b+o(1) on

the derivative to get an asymptotic power law for k(k).
We continue now with the case when j(w) decays faster then any

power law, that is we assume

j(w) <
1
w l for any l and w > w0(l). (21)

To get the desired result we have to show that formula (15) holds. Since
j−1(1

w) goes to infinity for w Q . we have to show

−j(x)
Dj(x)

=[j(x)]ox(1). (22)

The last formula states that the negative logarithmic derivative of j should
not become to large or to small compared to j respectively 1

j . For the
following it is convenient to set j(x)=e−g(x) with g(x) Q . and rewrite
formula (22) as

e−mg(x) <
1

Dg(x)
< emg(x) for m ¥ (0, m0) and x > x0(m). (23)

Assume that formula (23) is not true with respect to the right hand side.
Than we have for a sequence of values {xi} and open intervals Ii around
the xi and some function a(x)

1
Dg(x)

=emg(x)a(x) and a(x) > 1 for x ¥ Ii. (24)

Integrating the last equation gives

emg(x)=emg(x0)+m F
x

x0

1
a(z)

dz. (25)

Since our assumption on D[ 1
j(w)]

m to be monotone for m > 0 and w > w0(m)
implies a(x) > 1 eventually we conclude that

emg(x) < emg(x0)+m(x − x0). (26)

But the fast decay condition for j(x) translates into a growth condition for
g(x) namely for all k

g(x) > k log x; x > x0(k) (27)
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which clearly contradicts formula (26). It remains to show that the left
hand side of formula (23) also holds. Assuming the converse we get

1
Dg(x)

=e−mg(x) 1
a(x)

and a(x) > 1 for x ¥ Ii (28)

and after integration

e−mg(x)=e−mg(x0) − m F
x

x0

a(z) dz. (29)

The monotonicity condition again implies a(x) > 1 eventually, hence

e−mg(x) < e−mg(x0) − m(x − x0) (30)

and a clear contradiction since the right hand side becomes negative for
large values of x. With this result in hand we get for the leading term

kess(k)=
(k0A)

1
a (1+o(1))
ak1+1

a
· F

k1/2+c

−k1/2+c

1 k0A
k+e

2
o(1)

a

·
e− e2

2k+o(1)

(2pk)
1
2

de

=
1

k1+1
a+o(1)

F
k1/2+c

−k1/2+c

e− e2

2k+o(1)

(2pk)
1
2

de=
1

k1+1
a+o(1)

. (31)

For the minor integrals we get

k (1)
small(k)=F

−k1/2+c

−k

(k0A)
1
a

a(k+e)1+1
a
·

− j p j−1 11 k0A
k+e

2
1
a2

(Dj) 1j−1 11k0 · A
k+e

2
1
a22

·
e− e2

2k+o(1)

(2pk)
1
2

de (32)

and

k (2)
small(k)=F

.

k1/2+c

(k0A)
1
a

a(k+e)1+1
a
·1 k0A

k+e
2

o(1)
a

·
e− e2

2k+o(1)

(2pk)
1
2

de

=o 1 1
k1+1

a

2 . (33)

To see that k (1)
small(k) is of order o( 1

k1+(1/a)) fix c > d > 0 sufficiently small and
some k − such that

−j p j−1 11 k0A
k+e

2
1
a2

(Dj) 1j−1 11k0 · A
k+e

2
1
a22

< 1 k
k0A

2
d

a

for k > k −. (34)
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With

Cmax(d0)= max
0 < k < k −

˛ − j p j−1 11k0A
k
2

1
a2

(Dj) 1j−1 11k0A
k
2

1
a22

ˇ < . (35)

we obtain for k (1)
small(k) the following estimation:

k (1)
small(k) < (k0A)

1
a · Cmax(d) k −e−(k

2 − 2k −)

+F
k − k1/2+c

k −

(k0A)
1
a

ae1+1
a

·1 e

k0A
2

d

a

·
e−k2c

2 +o(1)

(2pk)
1
2

de

=o 1 1
k1+1

a

2 . (36)

Therefore we obtain in the case when j decays faster then any power law
that the degree distribution k(k)= 1

k1+(1/a)+o(1) is independent of j. L

2.2. The Case of Nonconstant Outdegree

Next we deal with the case when the outdegree distribution is not
constant. We will always assume that the expected outdegree is finite to
keep the total number of edges proportional to N. First we show that the
indegree distribution is the same as in the constant degree case with k0

replaced by E(dout(x)). With respect to the total degree distribution two
situations can appear. Either the r.v. dout is independent of the r.v. w or
not. In the independent case one has to take then just the convolution of
indegree and outdegree distribution to get the total degree distribution. The
guiding principle here is, that the dominating distribution wins. If things
are not independent the analysis becomes quite more involved and we will
sketch only the relevant steps dealing with a detailed investigation in a
separate paper.

We start with the independent case. Let

qk=Pr{dout(x)=k} (37)

and

pk=Pr{din(x)=k} (38)
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the asymptotic outdegree respectively indegree distributions. Since we
assumed asymptotic independence we get for the total degree distribution
dk the convolution

dk= C
0 [ i [ k

qi · pk − i. (39)

We say that the tail of a distribution {pi} dominates the tail of another
distribution {qi} if qi=o(pi). For the {pi} we assume further that it is an
asymptotic power-law distribution with exponent c > 2. We estimate dk as
follows:

dk= C
0 [ i [

k
2

qi · pk − i+ C
0 [ i < k

2

qk − i · pi

= C
0 [ i [

k
2

qi ·
1

(k − i)c+o(1)+ C
0 [ i < k

2

o 1 1
(k − i)c+o(1)

2 ·
1

ic+o(1)

=
1

kc+o(1) C
0 [ i [

k
2

qi ·
1

(1 − i
k)

c+o(1)+o 1 1
kc+o(1)

2 C
0 [ i < k

2

1
(1 − i

k)
c+o(1) · pi. (40)

Since both sums in the last expression are bounded and larger zero we
obtain

dk=
1

kc+o(1) . (41)

In the case when the outdegree distribution is the dominating one (and in
our case it has to be a power-law distribution) we can just reverse the
above argument to show that the total degree distribution is in this situa-
tion the outdegree distribution.

It remains to show that a variable outdegree will not affect the struc-
ture of the indegree distribution. The main difference in comparison to the
previous section is that formula (7) gets replaced by

kw(k)=C
M

Pr{Ä of edges in VN=M}

×1M
k
21 A(t, N)

[j(w)]a N
2k 11 −

A(t, N)
[j(w)]a N

2M − k

. (42)

Since for M=const · N each binomial term still converges to a Poisson
distribution with parameter const · A

[j(w)]a it is not difficult to show that in case
when a limiting outdegree distribution exists and the first moment is finite
one still obtains a limiting Poisson distribution where k0 is replaced by
E(dout).
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2.3. The Degree Correlation and the Clustering Coefficient

It is interesting to note that graphs formed by the ‘‘Cameo Principle’’
show a degree affinity which is observed in many real networks and which
is also one of the underlying assumption in the Albert Barabasi model,
namely

Pr{an edge starting in x ends up in a vertex y with d(y)=k}=
k
N

· const.

(43)

To see that this is the case recall from the previous sections that the typical
vertices with degree k have w-values from Iess(k) for large k. Due to the
definition of the directed edge probability we get for |e| < k

1
2+c

Pr{x Q y | w(y) ¥ Iess(k)}=
A

5j 1j−1 11 k0A
k+e

2
1
a226a

·
1
N

=
A

1 k0A
k+e

2
·

1
N

=
k(1+o(1))

k0N
=

k(1+o(1))
;x ¥ VN

d(x)

=Pr{x Q y | d(y)=k}. (44)

Therefore it seems to us, that if one observes in real networks edge affini-
ties proportional to the degree one cannot conclude that the generation of
the graph is also due to an edge formation process build up from this pro-
portionality (like in the Albert–Barabasi model).

We want to close this section with a short discussion of the clustering
coefficient. Since no explicit local clustering rule was implemented in our
model one cannot expect a high clustering coefficient. Nevertheless it will
be slightly larger then in the classical G(N, p) case. Again we will study
here only the situation for constant outdegree k0. Remember that the clus-
tering coefficient of a vertex x with degree k is defined as

C(x)=
2 · Ä{(y, z); y ’ z and y, z ¥ N1(x)}

k(k − 1)
(45)

where N1(x) is the set of neighbors of x. The global clustering coefficient is
then just the expectation E(C(x)). In what follows we will only give an
explicit computation for the number of edges in N1(x) which is a little bit
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simpler to compute. Since the edge formation probabilities depend only on
the ‘‘target’’ vertices, we get on N1(x) the same w-distribution as on the
whole graph. In other words for any fixed x the probability that a
y ¥ N1(x) has w(y) > w0 is given by >.

w0
j(w) dw. Therefore to compute

E(Ä{(y, z); y ’ z and y, z ¥ N1(x)} | d(x)=k) it is enough to compute the
expected number of edges in a random vertex sample of given size k. It is
easy to see that this number equals k0(k − 1)

N . Since we know further that in
the limit N Q . the degree distribution for an x with w(x)=w is the
Poisson distribution ck − k0

w

(k − k0)! e−cw with cw= k0 · A

[j(w)]a and k \ k0 we get with
T(w) :=E(Ä{(y, z); y ’ z and y, z ¥ N1(x)} | w(x)=w)

T(w)= C
k \ k0

k0(k − 1) ck − k0
w

N(k − k0)!
e−cw

= C
m \ 0

k0(m+k0 − 1) cm
w

N · m!
e−cw

=
k0cw+k0(k0 − 1)

N
(46)

and finally

F
w

T(w) dw=F
k0

k0 · A
[j(w)]a

+k0(k0 − 1)

N
dw (47)

as the expected number of edges among the neighbors of a random chosen
vertex x. Completely analogous one can obtains the asymptotics const

N for the
expected clustering coefficient C. The explicit expression for the constant
there is more cumbersome but straightforward.

3. A GROWING NETWORK MODEL

In the above sections we described a model where the total number of
vertices is large but fixed and all edges are generated at once simulta-
neously. Since real networks are typically evolving networks many models
allow a growth process for the graphs. This is easy to incorporate in our
situation too. For simplicity and since it is rather common today we use the
evolution concept from Albert and Barabasi. (2)

We start with an initial graph G0 with N0 vertices and at each time
t ¥ N a fixed number L0 of new vertices with w-values taken again i.i.d.
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with density j(w). Each vertex forms at the time when it enters the graph,
k0 edges with the vertices already present. The edges are formed according
to the ‘‘Cameo Principle’’ that is

pw(t) :=Pr{x Q y | w=w(y) and x enters the graph at time t}

=
A(tt, Nt)
[j(w)]a

·
1

Nt
(48)

where tt is the realization of the w-values at time t, Nt=tL0+N0, and
A(tt, Nt) a normalization constant. Let d(x, t, y) be the degree of x at time
t and y(x)=y the time when x entered the graph. For x fixed and t ± y we
have

E(din(x, t))= C
t

i > y

k0A(ti, Ni)
[j(w(x))]a

·
1

Nt
4

k0A
[j(w(x))]a · L0

(log t − log y). (49)

We now investigate the asymptotic indegree distribution, namely the
asymptotic probability that a randomly chosen vertex from the evolving
graph at time t has indegree k. For simplicity we deal here only with the
case L0=1. We first look at the indegree distribution kw(k, y, t)=
Pr{din(x, t)=k} for a fixed x with w=w(x) and y=y(x). Since

kw(k, y, t)=Pr 3 C
y: y(y) > y(x)

1y ’ x=k4 (50)

with 1y ’ x being the independent r.v. of the indicator function that y
formed an edge with x , one gets by a well known theorem in probability
theory for t − y large a limiting Poisson distribution with expectation equal
to E(din(x, t)) (see ref. 6 for recent sharp results in this direction). In
complete analogy to Section 2 we obtain after integration over w a scale
free distribution for k(k, y, t)—the not on w conditioned indegree distribu-
tion. Taking explicit care on the y dependence we get

k(k, y, t)=
(k0A[log t − log y])

1
a

k1+1
a+o(1)

; t − y >
k
k0

. (51)

Note that o(1) does not depend on y for t − y ± k. To obtain the final (not
on y conditioned) distribution k(k, t) we just have to sum
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k(k, t)=
1
t

C
0 < y < t

k(k, y, t)

=
1
t

C
0 < y < t

(k0A[log t − log y])
1
a

k1+1
a+o(1)

=
1

k1+1
a+o(1)

. (52)

In the last two equalities we have implicitly used the fact that the terms
with t − y ’ const · k do not really contribute to the k(k, t) distribution and
that ; 0 < y < t log y ’ t log t − t.

4. A MODEL VARIANT WITH HIGH CLUSTERING COEFFICIENT (THE

‘‘MY FRIENDS ARE YOUR FRIENDS’’-PRINCIPLE)

To get high clustering coefficients one has to incorporate local edge
formation rules into the model like in the famous small world model of
Watts and Strogatz. (7) A natural way to do this for our graphs is by intro-
ducing a kind of additional local choice rule: with probability p make the
choice into the neighbors of your own neighbors at the given time and with
probability q=1 − p proceed like above. We call this rule the ‘‘my fiends
are your friends’’ principle for obvious reasons. It should be a well known
principle in social sciences since many social contacts are formed that way.
We will give a detailed investigation of the types of graphs resulting from
such processes in a forthcoming paper. (4) Here we will present only an
informal discussion of some of the main properties. First it is important to
note that the order in which the edges are created plays now a role (at least
for the fine structure of local properties of the graphs). To fix the setting let
us consider the following rule. The enumeration of the vertex set we will
associate with the time at which the vertex will make a choice. The first
choice each vertex makes is an independent one according to the rules spe-
cified in the previous paragraph. For the next choices any vertex x has two
options—with probability q=1 − p he proceeds as with the first choice
(independent, global choice) or with probability p he chooses from N2(x, t),
the set of vertices at distance 2 from x at time t (dependent, local choice).
We remark that the concrete form of j(w) is irrelevant for the further dis-
cussion. Two situations are now natural to consider:

Case A. At an initial set of choices all vertices make their first,
independent choice (here the order in which the choices are made does not
matter). After that, each vertex makes it’s second choice at the time corre-
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sponding to it’s index number, then all vertices make their third choice and
so on (to avoid a bias one should renumber randomly the vertex set after
each sequence of choices).

Case B. Each vertex makes the remaining k0 − 1 choices immedi-
ately after the first one. Again the time when a vertex is about to make the
choices corresponds to it’s index number.

Let T(x) be the number of triangles in the final graph containing x.
There are some trivial lower and upper bounds on the expectation of T(x).
First observe that due to the bounded outdegree there cannot be more than
(k0 − 1) d(x) edges among N1(x). On the other side any choice made by x
according to the ‘‘my friends are your friends’’-rule automatically generates
a triangle containing x. Therefore E(T(x)) \ p(k0 − 1) and hence the corre-
lation coefficient is independent of N asymptotically. We claim that for
large d(x) the conditional expectation given the degree is approximately
E(T(x) | d(x)) 4 const · d(x). We outline the reason for that for k0=2 and
the situation in Case B. Note that the rule from Case B is also the canoni-
cal one if one wants to deal with growing networks.

Let d1
in(x) be the indegree of x after each vertex made the first choice.

Denote further by N1
l (x) the set of vertices at distance l from x after the

first choices are made. Since the first choices are independent, a vertex x is
not part of a triangle almost surely. In the second round of choices trian-
gular configurations will be formed frequently. Since we assumed that d(x)
is large we can assume that d1

in(x) is large too. There are two mechanisms
which contribute to T(x) when the second choices are made. First all ver-
tices in N1

1(x) create an edge into N1
l (x) with probability p and since

|N1
1(x)|=d1

in(x)+1 is assumed to be large we can neglect the events that
multiple edges are created. So we expect p(d1

in(x)+1) triangles containing x
from this process. Second any vertex z from N1

2(x) can chose x with prob-
ability p

|N1
2(z)|

and therefore create a new triangle. Furthermore for most ver-
tices z ¥ N1

2(x) we have

|N1
2(x)| ’ d1

in(x) · const · |N1
2(z)| (53)

from which we get an estimation of order pd1
in(x) · const for the expected

number of triangles generated via this process. Combining these estimations
and using the fact that the number of independent choices pointing to x in
the second choice sequence is about (1 − p) d1

in(x) we obtain

d(x) ’ d1
in(x)+(1 − p) d1

in(x)+p(d1
in(x)+1)+pd1

in(x) · const

’ d1
in(x)(2+p · const) (54)
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which gives for the expected number of triangles

E(T(x) | d(x)) ’
p(1+const)
2+p · const

d(x). (55)

The above considerations are of course of heuristic type but can easily
made be precise. The const appearing in the above formulas can as well be
explicitly computed. We remark finally that the above considerations
remain true if the outdegree distribution is not a constant and that the
clustering mechanism does not change the asymptotic shape of the total
degree distribution. We plan to discuss all this aspects in much more detail
in a paper in preparation.

5. CONCLUSIONS AND OUTLOOK

We have shown in this article that graphs with a scale-free degree dis-
tribution appear naturally as the result of a simple edge formation rule
based on choices where the probability to chose a vertex with affinity
parameter w is proportional to the frequency of appearance of that
parameter. If the affinity parameter w is itself power law like distributed
one could also use a direct proportionality to the value w to get still a scale
free graph since j(w) is itself a polynomial relation (this explains the
observation reported in ref. 5).

We have not tried in this paper to give estimations on the error terms
for the asymptotics. Numerical simulations, which will be reported else-
where, indicate that already for values of k of order const · k0 and vertex
sets of size N % 105 one has a very good agreement with the asymptotic
result. Of course in all these finite size effects the concrete form of j really
matters.

It seems natural to investigate models where j(w) has a singular, for
instance discrete, support. Such a situation is common when one couples
for instance the choice probabilities directly to the outdegree (see ref. 3 for
a specific model of such type). Some care is necessary in that case. For
instance if one takes a discrete integer valued random variable k with the
distribution j(k)=const · exp(−k) and proceeds like in the case of the
continuous variable w it will be not longer true that the asymptotic degree
distribution is a power-law distribution. The reason behind this is the
following. The expected indegree of vertices x and y with k(x)=k0 and
k(y)=k0+1 differs by a constant factor but since the indegree of x and y
is concentrated in an interval of length square root of the expectation
around the expectation there appears a gap in the degree distribution of the
whole graph. If j(k) is a power law distribution with exponent b the same
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remains true for a > 2
b whereas for a < 2

b a similar proof with the same
results as in the continuous case can be given. In general one needs for
singular j(w) an overlap condition for the involved Poisson distributions
to get a power law tail distribution.

With respect to the clustering mechanism described in Section 4 there
are many interesting questions. What is the effect on diameter, average
path-length and spectral properties?
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